

Data to Herd Productivity

Body Condition

Not just Back-Fat

Measures of Body Condition

- Body Mass (e.g., dressed carcass)
- Body Size (e.g., bone lengths)
- Reserves Protein (e.g., muscle)
- Reserves Fat (e.g., back / kidney / gut / marrow)

Body Condition

linked to

Reproductive Success

Christine Cuyler, Greenland Institute of Natural Resources Robert G. White, Institute Arctic Biology UAF 4

Affect Reproduction via

- Pregnancy rate + cow fall 'BC'
- Foetal mortality + cow fall 'BC'
- Calf birth wt + cow protein reserves
- Milk production + cow 'BC'
- Weaning strategy
- Cow age at 1st reproduction
- Delayed calving if hard winter

Factors affecting Body Condition?

- Climate / Weather
- Range / Forage
- Caribou age / sex / migration
- Caribou density
- HEALTH pathogens (Parasites / Disease)

Health Monitoring (parasites + diseases)

Data

Herd Productivity

Also Important

Predators, Development, Disturbance, Competition other spp

Regulated human harvest

Predators Development Disturbance Competition other spp

Greenland Caribou Migration

"SHORT" Migration

Body Condition March / April COWS Pregnant + Lactating + Calf-at-heel 12% 8% **Kangerlussuag-Sisimiut Akia-Maniitsoq** (AM) (KS)n = 34n = 34

Greenland Caribou

HEALTH 2 CARMA Herds

Known LACK of Disease NO...

Anthrax / Aujeszky's dis./ Echinococcosis / Heart Water / Leptospirosis / Q fever / Screw worm / Foot & Mouth / Rinderpest / Brucellosis / Vesicular stomatitis / Lumpy skin disease / Peste des petits rumninants / Sheep pox / Goat pox / Newcastle Disease / Swine fever / Bluetongue / Rift Valley fever / Swine vesicular disease/ Contagious bovine pleuropuneumonia / African horse sickness / African swine fever / Bird flu *Until recently*

Paratuberculosis (Johne's Disease)

Caribou Abundance

AM KS Decline Stable

Snapshot 1997 vs 2008-09 Body Condition Carcass Weight AM KS Carcass Wt **Carcass** Wt NOT significant

Øestrids

Warble Fly Larvae

> 500

E Cost of supporting warble larvae burden modest...still

1) Supported the -ve relationship between Back fat &Warble #

2) High warble # could affect calf winter survival

Cuyler et al. 2012

Dressed Carcass Weight

2008 Akia-Maniitsoq All Cows > 3 yrs Carcass weight vs Warble number

Dressed Carcass Weight

2009 Kangerlussuaq-Sisimiut All Cows > 3 yrs Carcass weight vs Warble number

Body Condition Reduced Cow's Foregone Carcass Wt per 100 Warble Larvae

AM 1.4 kg

KS 1.1 kg

Snapshot 1997 vs 2008-09 Mean + Max Warble number

Monitored variable often cannot be shown to affect fecundity / herd productivity

Recognize there are many factors affecting fecundity / herd productivity

> Even if not statistically significant still could be having an effect, most likely indirect

GI Nematodes & Body Condition GI nematodes #'s AM KS Kidney fat index Kidney fat index Protein mass Protein mass Back fat Carcass weight

Steele et al. 2012

Nematode Ostertagia gruehneri has negative effect on fecundity

O. gruehneri

Steele et al. 2012

Christine Cuyler PhD Greenland Institute of Natural Resources, www.natur.gl

26

Snapshot 1997 vs 2008-09 Pregnancy rate

Caribou Abundance

AM KS Decline Stable

Body Condition & HEALTH NOT a tidy picture

Seems there is an assumption that Body Condition & Health are tightly related to fecundity This is not necessarily true.

Statistics + Small Sample Size doesn't tell entire story

Body Condition & HEALTH NOT necessarily the same thing

) 1 and 2 2m3 4 5 6 7 2m3 8 9 10 11 + 12 13 14 15 16 17 + 18 19 2 0 21 2 + 23 24 25 26 2

For example?

JUNE COW She's in great Health but poor Body Condition

For example? Autumn Bull

Tænia cysts

High infestation (poor Health) Yet great Body Condition

Body Condition Measures

- Body Mass (e.g., dressed carcass)
- Body Size (e.g., bone lengths)
- Reserves Protein (e.g., muscle)
- Reserves Fat

 (e.g., back / kidney / gut / marrow)

Health Measures: pathogens

- Parasites (e.g., prevalence, intensity)
- Diseases

Perhaps 2 Manuals Better?

Health (pathogens) Body condition

Thoughts

- 1. Is pathogen effect on reproduction measurable?
- 2. Is pathogen effect too subtle to detect?
- 3. Body Condition & HEALTH (pathogens) are they dependent on each other?

4. Is Body Condition a major indicator of HEALTH independent of pathogens?

How to integrate HEALTH (parasites + diseases) into herd monitoring?

How to Link Health Data to Herd Productivity?

Qujanaq

