Information system "Reindeers of Eurasia"

<u>Prepared by:</u> Yaroslav Bykov [YAR@AVANTLAB.COM], Vladimir Mikhailov, Leonid Kolpashikov.

St.Petersburg, Russia, 2008.

Problems of current situation (regarding all observation data):

- 1. Very diverse data and conditions
- 2. Data are **poor** organized, **poor** structured, almost no regular data
- 3. Data are multidemensional
- 4. Often we have just small pieces of information, just small table. But we have a lot of such small tables!

Tree hierarchy

Example of factual data

Table 3. Age changes	of the body	y build of ma	les of deers	of West Tair	nyr, cm
0 0					

Indi- cators	2 mo nth s, n	2 mont hs, M±m	2 mon ths, C	4 mon ths, n	4 mont hs, M±m	4 mon ths, C	12 mon ths, n	12 mont hs, M±m	12 mon ths, C	2 year s, n	2 years, M±m	2 years, C
Body length	8	103,2±3, 7	10,1	25	126,2±1, 7	6,8	3	133,3±4, 4	3,3	7	152,0±4, 2	7,3
Height	8	75,2±7,5	28,3	24	87,4±0,9	4,9	3	92,7±5,4	5,8	7	107,4±3, 4	8,3
slanting body length	8	66,0±2,1	9,2	24	82,2±0,7	4,4	3	85,0±0,6	1,2	7	97,7±2,1	5,8
chest	8	65,0±2,0	8,7	24	82,3±0,9	5,5	3	91,7±3,2	6,0	7	105,3±3, 8	9,5
Tail length	8	10,1±0,2	6,3	22	12,4±0,3	12,9	3	12,7±0,9	12,0	7	15,1±0,4	7,0
Ear length	8	9,3±0,3	9,5	23	10,4±0,2	9,4	3	12,0±0,6	8,3	5	13,2±0,8	14,5
cyst length	3	28,7±0,3	2,0	13	30,6±0,4	5,1	3	32,0±0,6	3,1	7	34,7±2,6	20,1
foot length	3	40,0±1,1	5,0	14	43,5±0,5	4,2	3	44,7±1,5	5,9	7	47,6±2,1	11,9

1st Level. Population of wild northern deers.

1. Taimyr population

Tree hierarchy (Classification)

2nd Level. Main population groups (herds)

1.1 West-Taimyr

3rd Level. Ecology-population characteristics (populations or herds).

- **1.1.1. Internal structure of population.**
 - 1.1.1.1. Status
 - 1.1.1.2. Morpho-physiology
 - 1.1.1.2.1. Body-build (Table 2, 3. Age changes of the body-build...)
 - 1.1.1.2.2. Morphological indicators
 - (Table 4. Morphological properties, Table 6. Age changes)
 - 1.1.1.2.3. Horns (antlers) (Table)
 - 1.1.1.2.4. Skulls (Table)
 - 1.1.1.3. Genetics
 - 1.1.1.4. Biochemistry
 - 1.1.1.4.1. Biochemical structure of flesh (Table 7.)
 - 1.1.1.4.2. Biochemical structure of fat (Table)
 - 1.1.1.4.3. Biochemical structure of antlers of young stags
 - 1.1.1.4.4. Medicinal raw materials.
 - 1.1.1.5. Growth and development
 - 1.1.1.6. Food.
 - 1.1.1.7. Weight- and energy-balance.
 - 1.1.1.8. Reproduction
 - 1.1.1.9. Mortality
 - 1.1.1.10. Population and sex and age related structure based on aircalculation
 - 1.1.1.11. Sex and age related structure based on teeth histocuts
 - 1.1.1.12. Population size balance.
 - 1.1.1.13. Behavior and activity.
 - 1.1.1.14. Spatial structure.
- 1.1.2. Population in ecosystem.
 - 1.1.2.1. Trophic relationships

First Levels of tree hierarchy

1st Level. Population of wild northern deers.

1. Taimyr population

2nd Level. Main population groups (herds)

1.1 West-Taimyr

3rd Level. Ecology-population characteristics (populations or herds).

- **1.1.1. Internal structure of population.**
 - 1.1.1.1. Status
 - 1.1.1.2. Morpho-physiology
 - 1.1.1.2.1. Body-build (Table 2, 3. Age changes of the body-build...)
 - 1.1.1.2.2. Morphological indicators
 - (Table 4. Morphological properties, Table 6. Age changes)
 - 1.1.1.2.3. Horns (antlers) (Table)
 - 1.1.1.2.4.
 - 1.1.1.3. Genetics
 - 1.1.1.4. Biochemistry
 - 1.1.1.5.
- **1.1.2.** Population in ecosystem.
- **1,1.3. Habitation Environment**
- **1.1.4. Economic utilization**
- 1.1.5. Monitoring and protection
- 1.2 Central-Taimyr
- 1.3. East-Taimyr
- 2. Leno-Olenek population
- 3. Yano-Indigirka population
- 4. Chirindskaya population
- 5. Chukotian population

Problems of the system:

- 1. This is **information** system, it does not provide any analysis tools.
- 2. Difficult **to compare** the data in different branches (e.g. between populations)
- 3. No possibility to run automated reports
- 4. Very depend on moderator's expertise.

Advantages of the system

- 1. Allows gather, edit, change, etc information from many authors in one place
- 2. Allows to contain **any diverse information** (text, tables, graphs, pictures, links, etc)
- 3. Tree is a very **good organization structure**. User will spent time to get acknowledged with the tree, but after that it became very convenience.
- 4. Tree allows **to see what information is available**, and what is missing (so, tree allows to define where to dig deeper)

5. etc.

To make analysis, it is necessary to do the following **before analysis**:

- 1. Data should **be gathered**, before they could be analyzed.
- 2. Data should be "normalized" everywhere, data must have **unified thesaurus** (conditions, measures, definitions), before they could be compared.
- 3. Data should be ready to **be transferred or integrated** with relational database, to run statistical or other analysis and reports.

Conclusions

 After gathering data, the first step towards modeling or analysis should be development of definitions, <u>unified thesaurus</u> (conditions, measures)

(Task of CARMA)

2. All data should be **transformed** with accordance of this thesaurus ("normalized").

(Task of scientists who collect data)

- All data should be transformed to relationship system, integrated with analysis systems, etc. (Task of IT engineers)
- 4. Any (not local) analysis or data comparison is **useless** before the preconditions above.

These concusions could be also considered as steps to do